

ELIZADE UNIVERSITY ILARA-MOKIN ONDO STATE

FACULTY: Basic and Applied Sciences
DEPARTMENT: Physical and Chemical Sciences
FIRST SEMESTER EXAMINATIONS
2017/2018 ACADEMIC SESSION

COURSE CODE: PHY 205

COURSE TITLE: CLASSICAL MECHANICS I

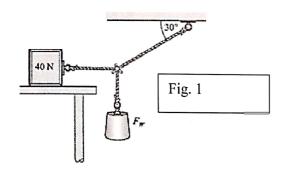
DURATION: 2 HOURS

HOD's SIGNATURE

TOTAL MARKS: 60

Matriculation Number:

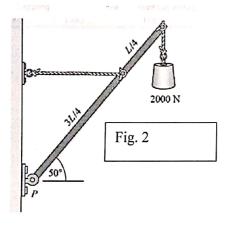
INSTRUCTIONS:


- 1. Write your matriculation number in the space provided above and also on the cover page of the exam booklet.
- 2. This question paper consists of 2 pages with printing on both sides.
- 3. Answer all questions in the examination booklet provided.
- 4. More marks are awarded for problem solving method used to solving problems than for the final numerical answer.
- 5. Box your final answers.
- 6. Attempt any 3 of the 5 questions

QUESTION 1

Object 1 of mass m_1 is initially moving with a speed $v_{1,0} = 3ms^{-1}$ and collides elastically with object 2 that has the same mass, $m_2 = m_1$, and is initially at rest. After the collision, object 1 moves with an unknown speed $v_{1,f}$ at an angle $\theta_{1,f} = 30^{\circ}$ with respect to its initial direction of motion and object 2 moves with an unknown speed $v_{2,f}$, at an unknown angle $\theta_{2,f}$. Find

- (a) The final speed of each of the objects
- (b) The unknown angle $\theta_{2,f}$


QUESTION 2

The system in fig. 1 is in equilibrium. If the frictional force on the 40N block cannot exceed 12N, Find:

- (a) The maximum value of F_w
- (b) The coefficient of static friction between the block and the tabletop

QUESTION 3

A uniform 400N boom is supported as shown in fig. 2. Find

- (a) The tension in the tie rope
- (b) The force exerted on the boom by the pin at P

QUESTION 4

A simple pendulum consists of a mass m suspended from a fixed point by a weightless, extensionless rod of length l. Using the approximation of $\sin\theta \cong \theta$,

- (a) Deduce the equation of motion of the pendulum
- (b) Show that the natural frequency is $\omega_o = \sqrt{g}/l$, where g is the gravitational field strength.

QUESTION 5

The radius of the Earth is about 6370km, while that of Mars is about 3440km. If an object weighs 200N on Earth, calculate:

- (a) The weight of the object on Mars
- (b) The acceleration due to gravity on Mars